Skip to content
Shop

CommunityJoin Our PatreonDonate

Sponsored Ads

Sponsored Ads

Math Symbols

Summation

The addition of a sequence of numbers

i=1100(2i+1)
python
def summation(start,end):
    running_sum = 1
    for i in range(start,end):
        running_sum += (2*i) + 1
    return running_sum
print(summation(1,100))

Big PI

The multiplication of a sequence of numbers

i=16i
python
def pi(start,end):
        running_product = 1
        for i in range(start, end + 1):
            running_product *= i
        return r
print(pi(1,6))

Dot Product

Combine two vectors

ab=i=1n(aibi)=aibi+a1b1+a2b2++anbn

python
def dot_product(self,a, b):
        dp = 0
        for i in range(len(a)):
            dp += (a[i]*b[i])
        return dp

vector1 = [1,2,3,4,5]
vector2 = [2,1,1,1,1]

print(dot_product(vector1, vector2))

Piece Wise

A function built from pieces of different functions over different intervals

f(x)={x2xx,if x >= 10,otherwise
python
def f(x):
  if (x >= 1):
    return (math.pow(x, 2) - x) / x
  else:
    return 0

Math As Code

https://github.com/Experience-Monks/math-as-code/blob/master/PYTHON-README.md

Slope formula logrithms matrix math dot product algebra basics

MathJax

View Documentation

When a0, there are two solutions to (ax2+bx+c=0) and they are

x=b±b24ac2a

Maxwell's equations:

equationdescription
B=0divergence of B is zero
×E+1cBt=0curl of E is proportional to the rate of change of B
×B1cEt=4πcjE=4πρwha?

More Jax

followed by a display style equation:

md
$$V_{sphere} = \frac{4}{3}\pi r^3$$
Vsphere=43πr3
md
$$f(a) = \frac{1}{2\pi i} \oint\frac{f(z)}{z-a}dz$$
f(a)=12πif(z)zadz
md
$$\sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2}$$
σ=1Ni=1N(xiμ)2
md
$$\vec{\nabla} \times \vec{F} =
            \left( \frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) \mathbf{i}
          + \left( \frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) \mathbf{j}
          + \left( \frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right) \mathbf{k}$$
×F=(FzyFyz)i+(FxzFzx)j+(FyxFxy)k
md
$$\sigma = \sqrt{ \frac{1}{N} \sum_{i=1}^N (x_i -\mu)^2}$$
σ=1Ni=1N(xiμ)2

Limits

md
$\lim\limits_{x\mapsto 1}\dfrac1x$

limx11x

Matrices

md
$\begin{bmatrix}
    i&j&k\\x_1&y_1&z_1\\x_2&y_2&z_2\\x_3&y_3&z_3
\end{bmatrix}$

[ijkx1y1z1x2y2z2x3y3z3]

Derivatives

md
$\displaystyle \frac{d\hat{\mathbf r}}{d\theta}$

dr^dθ

Integrals

md
$\displaystyle \int_{y_0}^{y_1} \int_{x_0}^{x_1} f(x, y) \,dx\,dy$

y0y1x0x1f(x,y)dxdy

Piecewise

md
$$f(n) =\begin{cases} 
    n/2,  &\text{if $n$ is even} \\ 
    3n+1, &\text{if $n$ is odd}
\end{cases}$$
f(n)={n/2,if n is even3n+1,if n is odd

Determinant

md
$$\begin{vmatrix}
1 & x_{0} & x_{0}^{2} & \dots & x_{0}^{n} \\ 
1 & x_{1} & x_{1}^{2} & \dots & x_{1}^{n} \\
\hdotsfor{5} \\
1 & x_{n} & x_{n}^{2} & \dots & x_{n}^{n}
\end{vmatrix}$$
|1x0x02x0n1x1x12x1n\hdotsfor51xnxn2xnn|

Logarithm

md
$log_{b}m$

logbm

Superscripts and Subscripts

md
$x_i^3+3x_i^2x_j+3x_ix_j^2+x_j^3$

xi3+3xi2xj+3xixj2+xj3

Fractions

md
$\frac{n(n+1)}{2}$

n(n+1)2

Reading Papers

Resources